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Dynamics of binary elastic collisions

3.1 Introduction

In ion beam modification of materials, the energetic ions interact with
the solid through forces which can be described by the ion-target atom
interatomic potential. These interactions are the basis of development
of expressions for ion range and ion damage in solids. Consider the
passage of an energetic ion in a solid during an ion implantation
cxperiment, Fig. 3.1. As the ion transverses the solid it undergoes

,collisions with the stationary target atoms, which deflect the ion from
its initial direction. The ion also collides with electrons in the solid
and loses energy in these collisions. The major changes in its flight

ng.3.1. The passage of an energetic ion in a solid during an ion implantation
txperiment, showing the total ion path and the projected range, Ro. As the ion
hansverses the solid, it undergoes collisions with the stationary target atoms,
which deflect the ion from its initial direction.

Target Surface
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40 Dynamics of binary elastic collisions

direction are due to the ion's collision with individual lattice atoms. In
this chapter we will focus on two-body collisions or binary collisions
involving energetic ions and target atoms.

The simplest collision event is the collision between a charged
particle and the atomic nucleus. This can be treated as a two-body
collision provided that the mean free path between collisions is much
greater than the interatomic spacing. The chance of correlation effects
due to neighboring atoms recoiling simultaneously is then very small.
The momentum of the recoiling target atoms is the parameter which
determines the amount of damage that occurs in the solid target. The
momentum transferred to the recoiling atom is also responsible for a
large portion of the energy-loss process of the ion.

In developing our understanding of ion-solid interactions for the
purposes of ion beam modification of materials, we will first derive
some general relations governing two-body collisions, considering only
the asymptotic values of momentum at great distances from the
collision. The principles of conservation of momentum and energy are
all that are required to obtain recoil energy as a function of recoil
angle. We shall assume that collisions are elastic and. further. that
velocities are small enough for non-relativistic mechanics to apply.

3.2 Classical scattering theory

The following assumptions are usually made in the description of the
scattering processes between energetic particles in solids (Sigmund,
1e72):

(a) two-atom collisions only are considered;
(b) classical dynamics is applied;
(c) excitation or ionization of electrons only enters as a source of

energy loss, but does not influence the collision dynamics;
(d) one of the two colliding atoms is initially at rest;

Assumption (a) is appropriate for violent collisions. Violent colli-
sions between atoms of reasonably high energy range (keV) require
the collision partners to approach very closely, so that the probability
for three-or-more-particle collisions is small. So/t collisions can take
place at large distances, and therefore can involve more than two
atoms simultaneously. However, soft collisions can usually be treated
by perturbation theory (the momentum or impulse approximation, see

3.3 Kinematics of elastic collisions

Section 4.4), in which case no restriction to binary collisions is neces-
sary. At lower energies (below l keV), collective effects become
increasingly important and assumption (a) starts to break down. How-
ever, the problems associated with many-body collisions in this low-
energy regime can be overcome by molecular-dynamic simulations
where assumption (a) is not required.

In the limit of assumption (b), the applicability of classical mechanics
is normally limited to specific quantities, one of which is the differen-
tial scattering cross-section do(Q), where 0. is the center-of-mass
scattering angle.

Neglecting the effect of electronic excitation on the collision dynam-
ics, assumption (c) is justified if either the energy transferred to
electrons is small compared with the exchange of kinetic energy
between the atoms (so that the scattering angle can be calculated by
assuming elastic collisions), or if no appreciable deflection takes place.
In either case, the electronic energy loss enters as a superimposed
energy absorption.

The assumption of one collision partner being at rest initially,
assumption (d), has been made in all previous work except molecular-
dynamics computations. It is not fulfilled in very dense collision
cascades, especially when the process of energy dissipation has pro-
ceeded to the point where most of the atoms in the cascade are in
motion.

3.3 Kinematics of elastic collisions

The energy transfers and kinematics in elastic collisions between two
isolated particles can be solved fully by applying the principles of
conservation of energy and momentum. We consider those collisions as
elastic in which the kinetic energy is conserved. An inelastlc collision
does not conserve kinetic energy; an example is the promotion of
electrons to higher-energy states in collisions where substantial K-shell
overlap occurs. The energy lost in promoting the electrons is not
available in the particle-atom kinematics after collision. In this chapter
we consider only elastic processes in ion-solid interactions. In Chapter
5 we will discuss the inelastic aspects of the collision process.

For an incident energetic particle of mass My,^the values of the
velocity and energy lre- us and ,Es (80: Glz)M1ufi), while the target
atoms of mass M2 are at rest. After the collision, the values of the
velocities o1 and o2and energies E1 and E2of the projectile and target
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42 Dynamics of binary elastic collisions 3.3 Kinematics of elastic collisions

Table 3.1. Definitions and symbols used in collision kinematics

energy of the incident projectile
total kinetic energy in the center-of-mass system
laboratory energy of the scattered projectile
laboratory energy of the recoiling target
energy E2 transferred to the target atom
center-of-mass variable scattering angle defined in Fig. 3.7
backscattering kinematic factor E1f Es
mass of the incident projectile
mass of the target particle
reduced mass in center-of-mass system
mass ratio MtlMz
velocity of the incident projectile in laboratory coordinates
velocity of the scattered projectile in laboratory coordinates
velocity of the recoiling atom in laboratory coordinates
velocity of the reduced mass in center-of-mass coordinates
velocity ofthe incident projectile (ion) in center-of-mass coordinates
velocity of the target atom in center-of-mass coordinates
laboratory angle of the scattered projectile
center-of-mass angle of the scattered projectile
maximum laboratory angle for M1 scattering (M t > Mz)
laboratory angle of the recoiling target atom
center-of-mass angle of the recoiling target atom
z: 180' = 0, * Q,
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i
atoms, respectively, are determined by the scattering angle 0 and
recoil angle @. The notation and geometry for the taUoratorv svstem of
coordinates are given in Fig. 3.2.Tabre 3.1 lists those symbols used in
kinematic expressions.

conservation of energy and conservation of momentum paraller and
perpendicular to the direction of incidence are expressed by the
equations

(3.1)

(3.2)
(3.3)

Es
E"
E1
E2
T
ec
K
M1
M2
Mc
p
o0
Ul

U2

0c

0ion

0atom

0
0c
0m

a
A"
n

i

ao : )tt ruf, = )ru rul + +M2ut
Mruo: Mplcos0 - t  M2u2cos$

0: Mplsin0- M2u2sine

These three equations, (3.1)-(3.3), can be solved in various forms.
For example, transposing the first term on the right to the left side in
Eqs. (3.2) and (3.3), squaring and adding, will eliminate @, giving

(Mzu)z = (Mpo)z + (Mp)2 - 2Mlusulcos0 (3.4)
Substituting Eq. (3'a) into Eq. (3.1) to eliminate u2, olafinds the ratio
of the particle's velocity before the collision to that after the collision:

u' :  , .Y'. .  cos0 + l(  ,rY, '  . ,  ) ' .o.,  e * *+#f ' t '  (3.s)us ML+ Mz [ \v,  + Mrl  
- - -  

Mr+ Mr]
Eq. (3.5) can be used with Eq. (3.a) to determine u2 and E2, and, it can
be used with Eq. (3.2) to find the angle of recoil, @, of the scattered
target atom.

If Mr) Mz, the quantity under the radical in Eq. (3.5) will be zero
for 0: 0-, where g- is found from:

cos2a-:1-4,0<gn,< o
Mi2

I

For 0 > 0. (and U = r), u1f us is either imaginary or negative, neither
of which is physical, so that 0,n represents the maximum-angle through
which M1 can be scattered.

For the condition M r 1 Mz, all values of g from 0 to n are possible,
and a positive value for u1f us results if the plus sign in eq. 1:.1 is
chosen. choice of the minus sign in this equationleads to negative
values of u1fus, which is physically unrealistic. The ratio oi ttre
projectile energies for M11 Mz, where the plus sign holds, is

n, _l(u3- Mlsin2 o)t / ,  +
Eo L Uz*Mt

Additional relationships between energy and scattering
given in Table 3.2.

2l'Mlcos

(3.6)

(3.7)

angles are

E^,V^qff /-\ At Restg,

Ez,vz

Flg. 3.2. Elastic collision diagram between two unequal masses as seen in the
luboratory refcrence frame.

-1 ' ' I

Im,
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Table3.2. Relationships between energy and scattering angles

- 
MzEo Eo Mt

; ,c:  -  LL:  -

Mr+Mz L+lr , '  Mz

K = Et _ Utcoso + (L - lt2sin2 o)r/zlz
Es (r + t|z

When M1 :  Mz,0 < L
2

Er _ lpcose ! (t - iPsin2 e)rlzlz
Es (r + p)2
0 < sin-l(l/p)

Ez:I-Et:  4MrMz 
*rz5

Es Es (ML + M)2

: 41, 
"osz 

4, : 
4p ,rnz / 

o" 
)

(r  + p\2 ( l  + tr)2 \2 1
where 4 < a

2

3.4 Classical two-particle scattering

between the two particles, so long as it acts only along the line joining
them (no transverse forces), the relative motion of the two particles
can be reduced to that of a single particle moving in an interatomic
potential centered at the origin of the center-of-mass coordinates. By
introducing the CM system, the mutual interaction of the two colliding
particles can be described by a force field, 7(r), which depends only
on the absolute value of the interatomic separation, ,n. The motion of
both particles is given by one equation of motion. This equation has r
as the independent variable and describes a particle moving in the
central force field V(r).

The CM coordinates for a two-particle system are defined in a
zero-momentum reference frame. In the frame, the total force on two
particles that interact only with each other is zero. Since we can define
the total force of two interacting particles as

45

Centre-of-mass energy

Laboratory energy of the
scattered projectile for
Mt< Mz

Laboratory energies of the
scattered projectile for
Mr> Mz

Laboratory energy of the
recoil nucleus

Laboratory angle of the recoil A =
nucleus

: Q' ;  s in@: (* t t ' \ t ' " rn,
2 \MzEzl

M2sin 0"

Fr=Fr*tr :#

111
- : - - l - -

M" M1 M2

M": 
MtMz

- M1+ M2

tan0:
M1 1 M2cos9"

Center-of-massangleof the 0c:n -2Q: r  -  e"
scattered projectile When M1 4 Mz + F < l, 0"is defined for

all 0 < n and 0" : 6 + sin-1 (psin 0)
When M1 ) M2 + 1t ) l, 0" is double
valued and the laboratory scattering angle is
limited to the range 0 > sin-1(1/p): In;his
case, 0":  0 + s in- l ( , r . ls in0),  or  0":  v |  6
- rtr-, (r.t" 0)

After Weller (1995).

3.4 Classical two-particle scattering
The collision and scattering problem defined by Fig. 3.2 will now be
restated in terms of center-of-mass (cM) coordinates. The motivation
for this transformation will be obvious when we discuss scattering in a
central force field later in this chapter. Through the use of CM
coordinates it will be shown that no matter how complex the force is

where F1 : total force, F1 and F2 are the individual forces on particles
I and 2, respectively, and p1 is the total linear momentum of the
two-particle system. For F1 :0, dpr = 0, indicating that the total
momentum is unchanged or conserved during the interaction process.

One of the consequences associated with observing elastic collisions
in the CM coordinates is that the individual particle kinetic energies
are unchanged by the collision process. Thus, the CM velocities of the
two colliding particles are the same before and after the collision
process. In addition, the CM scattering angle of particle 1 will equal
the scattering angle of particle 2. Finally, all scattering angles in the
CM system are allowed, unlike the scattering angles in the laboratory
reference frame where the allowed scattering angles depend on the
ratio M1f M2.

For CM coordinates, Fig. 3.3(b), we define the system velocity, u",
such that in this coordinate system there is no net momentum change,
so that

n-0,

(3.8)

(3.e)

(3.10)

(3.11)

Laboratory angle of the
scattered projectile

MtYo: (Mt + Mz)v"

We also define in CM coordinates a reduced mass, Mc, given by
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(a) Lab

Vo-V"

e"

Q"

3.4 Classical two-particle scattering 47

angle between the two particles (Fig. 3.3(b)). Thus, regardless of
whether the collision is elastic or inelastic, the total momentum is
unchanged in a collision. In addition, from Eqs. (3.13) and (3.14), we
see that the ratio of the ion to atom velocities is inversely proportional
to the ratio of their masses:

Yion _Y0-Yc _Mr_1 (3.1s)

the CM total

(3.16a)

(3.16b)

vatom vc Mr l.t

where Mpf,f2: Es.
In our discussion of ion-solid interactions. we will. for the sake of

simplicity, carry out many calculations in the center-of-mass system,
but we will want to relate the results to experiments in the laboratory.
Thus, it is useful to know some of the conversions between variables in
these systems.

The conversion of scattering angles from the laboratory system to
the CM system is determined from the scattering diagrams given in
Fig. 3.3. Examining the target atom (M) trajectory portion of Fig.
3.3(a), we see that the final target velocity in the laboratory, v2, is
related to the CM atom velocity, vatom:v", by the difference vector,
v". Since the triangle formed by these velocity vectors is isosceles, we
have

Q":2Q (3.r7)
From the CM diagram, Fig. 3.3, we have 0" * Q": n, which allows us
to rewrite Eq. (3.17) in the form

Another advantage to the CM reference frame is that
energy, E", is equal to the CM initial kinetic energy:

n":  ) l , t "uf ,

E": !  MtMz 
u'o = M' 

Eo
2M.+ M2 " Mr+ M2

n-0^
A:- ;

['ig.3.3. Elastic collision diagrams between two unequal masses as seen in the
(a) laboratory reference frame and (b) CM reference frame.

From Eqs. (3.9) and (3.11) we can represent the cM velocity in terms
of reduced mass as

(3.r2)

From the velocity vector diagram in Fig.3.3 and Eq. (3.I2), the ion
and target atom velocities in CM coordinates are

(3.13)

(3.r4)

Eq. (3.1a) shows that the target atom, which has zero velocity before
the collision in the laboratory reference frame, has the system velocity,
v., before and after the collision in the CM reference frame.

Eqs. (3.13) and (3.14) show the advantage of the CM reference
frame. The system velocity, v", and the atom and ion velocities, v",o_
and v;on, remain constant and are independent of the final scattering

v1 (E1)

rli

lll
ri]li
l

lrll
il

M"v" = voflz

Vion:V0 -r"-rr#

Vatom: ,"="0#

(3.18)

which relates the target atom scattering angle in the laboratory to the
CM ion scattering angle.

Another important relationship that will be needed in future discus-
sions on ion stopping and radiation damage is the one between the
energy transferred to the target atom as a function of the target atom
scattering angle 0. or 0. Again, from the velocity vector diagram in
Fig. 3.3(a), and the law of cosines, we have

u7: u? + lu? - 2ulcos(tr - Q)l (3.1e)
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T =2g-cosO.)
Eo 7l

T : sin2 o"
Es
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Using Eqs. (3.17) and (3.18) to recast 0c in terms of Ac, we obtain

u7,: 2u? (1 - cos 8) (3.20)

which relates the target atom recoil velocity in the laboratory to the

CM velocity and the CM ion scattering angle. Eq. (3.20) can be

simplified by using Eqs. (3.1a) and (3.17) to obtain

3.5 Motion under a central force

Table 3.3. Energy transfer and angular range of 0"

Heavy target M111 M2 0 < 16"l < r

Equalmasses Mr: Mz 0 < l0"l < A

Light target M1)> M2 0 < l0"l s tan-1 (MzlMi. 
+ += #rt,

After Johnson (1982).

elastic collisions with target atoms; they will be needed in the develop-
ment of the concepts of energy-loss cross-section and nuclear stopping
which will be discussed in Chapters 4 and 5, respectively.

As an example, to determine the energy transferred in a binary
collision where a 100keV boron (Mt=I0) ion incident on Si
(Mz:28) and scattered through a laboratory angle 0 : 45o, one first
determines the corresponding CM angle 0" from the expression given
in Table 3.2, e":0+sin- l(pls ing),  which gives 0":60o. Next we
calculate the ratio Tyf E from Eq. (3.25) which gives T.u :0.78E0.

Finally, for Es: 100 keV, T :19.5 keV from E,q. (3.26).
Additional relationships between the CM and the laboratory refer-

ence frames are summarized in Table 3.2. A summary of the angular
range of Q and the limitation on transferred energy as a function of
MtlMz are presented in Table 3.3. The limitations on laboratory
scattering angles are discussed in detail in Appendix E.

3.5 Motion under a central force

In our discussions of ion-solid interactions, we restrict ourselves to
central forces, where the potential V is a function of r only, V : V(r),
so that the force is always along r. We need consider only the problem
of a single particle of mass M", moving about a fixed center of force,
which will be taken as the origin of the coordinate system. Since
potential energy involves only the radial distance, the problem has
spherical symmetry, indicating that any rotation about a fixed axis can
have no effect on the solution; that is, if either particle is located at the
origin, the force on the other is given by a central force F(r), which
only depends on the separation distance r.

(3.2r)

which gives the laboratory recoil velocity, u2, LS z function of the initial

ion velocity, us, afld the laboratory recoil angle. This equation can now

be used to obtain the energy transferred to the target atom by the

incident ion through the kinetic energy velocity relationship,

E2: +M2uZ Qzz)
In many books, the energy transferred to the target atom, E2, is

referred to as Z. Substituting Eq. (3'21) into Eq. (3.22) gives

u) :2uoMc cosO- -M2

T=E^-Mz(uoM"cos| \2- Z\  Mz I

)  /  a^\2
T: -  lunM"sin j l

Mz\ -  2 l

4M,M, .0"
T-El '  '  s in ' j"(M1+ M)2 2

^0^?: Tvsin '  j
2

Tr:  
4MtMz 

-  Eo = TEo
(ML + M)"

(3.23)

The transferred energy, T, can be related to the ion scattering angle,

9", by Eq. (3.18) to yield

4E"M" " 0"
: -------:------: Sln' -

M1 2

From the description of reduced mass, Eq. (3.11), we rewrite Eq'

(3.24) to obtain

(3.24)

(3.2s)

(3.26)

(3.2t)

where ?y is the maximum energy transferable in a head-on collision,

0": 0, and is given bY

where y : 4M1M2l(M, + M2)2. Examining Eq' (3'27) we see that, for

the equal mass case, all the energy may be transferred, whereas' for a

larger mismatch in particle masses, only a fraction of the energy may

be transferred in an elastic collision'
These final relationships give the energy loss by the ion through

4
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50 Dynamics of binary elastic collisions

In the problem examined in this section we will assume that, in the
laboratory system, one of the particles is practically at rest at the
origin, O, while the other one moves with velocity u, a good approxi-
mation when the stationary particle is much heavier than the moving
particle.

3.5.1 Conservation of angular momentum
Consider a particle located in space at point P, a distance r away from
a central force originating at point O (Fig. 3.a). If the particle of mass
M at P is acted on by a force F, we have

F:Ma:Md"
dt

Forming the vector cross product of the position vector r with both
sides of this equation gives

_dv
rXF:rXM"'

dt
The left-hand side of this equation, r X F, is the

3.5 Motion under a central force 51

about O. The angular momentum, /, of the particle with respect to the
origin is given by

l : rXMv:rXp (3.2e)
The angular momentum / is a vector perpendicular to the plane

defined by r and v in Fig. 3.4(a), and bears the same relation to linear
momentum, p, as torque, z, does to force, F.

The time rate of change of / is given by

d/-  dr  xMv+rxMdY
dt dt dt

:vX MvtrXMY
dt

From Fig. 3.4, we see that the value of v X Mv is zero because it is the
cross product of tlio parallel vectors. The second term is simply the
torque due to the force about O, Eq. (3.28), leading to the expression

t=rXtr ' : {
dt

Eq. (3.30) relates the torque to the time rate of change of the orbital
angular momentum of the particle about the origin O. For F : F(r), a
central force, which is directed radially away or toward O, F is parallel
to r and r : F x r : 0. Thus. for a central force we have

{ :o
dt

which, when applied to Eq. (3.29), gives

/=rXp=constant

Eq. (3.32) is the statement of the conservation of orbital
momentum for the motion of mass M under a central force.

If we examine the situation described by Fig. 3.4(a) in the plane of
motion, which is defined by vectors r and v, the problem can be
presented in polar coordinates, and the velocity can be broken down
into its radial, u' and transverse, ue coordinates, Fig. 3.4(b). For the
polar representation in Fig. 3.4(b), the vector / points out of the page,
and its magnitude is given by

(3.28)

torque e due to F

(3.30)

(3.31)

(3.32)

angular

(3.33)

(a)

(b)

l
i l
i l
lri
lr
l
rli
];tl
i l l
l l

Fig.3.4. (a) Vector relationship of position, linear momentum, and orbital
mo-mentum. (b) Analysis of the velocity into radial and transverse components.
(After French, 1971.)

l :  rMue = Mr'#

where the product tu6= vZd|ldt is constant for a central force. For
ion-solid interactions and a CM coordinate system, M inE,q. (3.33) is
replaced by M".
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3.5.2 Energy conservati.on in a central force
For conservative central forces and a defined interaction potential,
V(r),we can write a statement for the total mechanical energy for a
particle of mass M, a distance r away from a central force, F, as
defined in Fig. 3.4(b), as

3.5 Motion under a central force 53

tial is repulsive, and the radial motion of this particle in the field Y(r)
will have no bounds or limits in its maximum value of r. However,
there is a minimum in r, the distance of closest approach, r,o1n, that
depends on the particle's total energy and the nature of the interaction
potential.

In Fig. 3.5(a), the energy curves for attractive and repulsive poten-
tial energy, differing only in sign, are presented along with an arbitrar-
ily defined centrifugal energy curve. In Fig. 3.5(b), the effective
potential energy curveswhere u, and u6 zte the radial and transverse velocities, respectively.

The first term on the right-hand side of Eq. (3.34) represents the
kinetic energy in polar coordinates.

In addition to the total energy equation given above, we also have
the condition of conservation of angular momentum given in Eq.
(3.33)

I  = Mrue

The quantities E and I are the constants of motion, while 7(r) is the
potential energy for a particle of mass M in a central field. Eqs. (3.33)
and (3.34) allow us to reduce the three-dimensional problem described
in Fig. 3.4(a) to a one-dimensional problem, Fig. 3.4(b), an advantage
of central field formulation.

Using Eq. (3.33) we rewrite Eq. (3.3a) in the form

o:{ f r?+u2r l+v(r)

E :  E(r) :  +.  #+ ve)

(3.36)

are shown for the two cases. Fig. 3.6 gives a schematic representation
of how the effective potential energy affects the trajectories of a
particle moving with an energy E: Mu2l2. The distance of closest
approach is determined by the value of r that satisfies the condition
E = V'(r) .

At large distances away from the center of force, the magnitudes of
V(r) and l2fzMrz will be negligible; see Fig.3.6. Under such condi-
tions, a particle with energy E travels in a straight line with a speed
uo: (2Ef M)tP. fn" particle's direction of motion is offset from a
parallel line through the center of force (target atom) by a distance b
that is directly related to the centrifugal energy and the angular orbital

(a) (b)

Fig.3.5. (a) Centrifugal potential-energy curve (dashed) and two potential-
energy curves, differing only in sign, that might arise from electrical inter-
actions of like and unlike charges. (b) Effective potential-energy curves corre-
sponding to the two cases shown in (a), indicating different distances of closest
approach for a given positive total energy. (After French,197l.)

(3.34)

(3.3s)

V'(r) :  V()  + - ! -
2Mr'

All terms in Eq. (3.35) are a function of r only: the first term is the
kinetic energy for the radial component, the term l2f2Mr2 is referred
to as the centrifugal energy, and V(r) is the interatomic potential
energy. The centrifugal energy is the portion of the kinetic energy term
which is due to the particle's motion transverse to the direction of the
radius vector. It is because the centrifugal energy can be described as a
function of radial position r alone that we can treat the radial motion
of a particle as a one-dimensional problem in r. Eq. 3.35 is now simply
a function of r only.

3.5.3 Angular orbital momentum and the impact parameter

Consider an interaction potential energy, V(r), that tends to zero as r
approaches infinity. This situation corresponds to the condition that a
moving particle has positive kinetic energy at infinity. If V(r) is
everywhere positive, but decreasing monotonically with r, the poten-

nergy

l l '
I r
l l
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^1"J*
Mvo

" l
a+
MVo

Fig.3.6. (a) Plan view of trajectory of a particle moving around a center of
attiaction. The angular momentum is defined by the impact parameter, b. (b)
Corresponding trajectory with the same impact parameter, but with a repulsive
center of force. (After French, 1971.)

momentum. From the law of conservation of angular momentum,
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potential. Knowledge of V(r) allows one to find r.6 by applying the
quadratic equation to Eq. (3.39).

3.6 The classical scattering integral

In this section, we wili derive an expression for the CM scattering
angle 0". We will see that 0. will depend on the interatomic potential
V(r), the ion energy E, and the impact parameter b.

The discussions in Sections 3.3-3 .4 of this chapter have reviewed the
elastic scattering process for the two-particle systems by only consider-
ing the asymptotic values of momentum and energy at distances far
from the collision site. However, to proceed with the development of
ion-solid interactions, we must know the probability for each scatter-
ing angle, which will allow us to determine the energy transferred
during scattering. The probability for a given scattering angle will lead
to the concept of the energy transfer cross-section in Chapter 4. The
only way to determine the probability of each scattering angle is by
evaluating the details of the scattering trajectory, which requires us to
understand the motion of the particles under a central force.

As we showed in Section 3.5, the problem of defining the scattering
trajectory of a moving particle in a central force field is greatly
simplified by assuming that the force between the two particles acts
only along the line joining them, and that there are no transverse
forces. The use of CM coordinates then reduces any two-body problem
to a one-body problem, namely the interaction of a particle with mass
M" and velocity u" with a static potential field, V(r), centered at the
origin of the CM coordinates. This simplification occurs because in the
CM system the total linear momentum of the particles is always zero,
the paths of the two particles are symmetric (as shown in Fig. 3.3), and
the evaluation of the path of one particle (scattering angle) directly
gives the path of the other particle. The conversion from CM scattering
angles to laboratory angles is then achieved with the equations sum-
marized in Table 3.2.

In Fig. 3.7 we represent the scattering process between an atom
moving with initial velocity us and energy Es and a stationary target
atom (initially shown in Figs. 3.2 and 3.3) with the details of the
scattering trajectories displayed for both the laboratory and the CM
reference frames. The distance b in the figure is the impact parameter,
as discussed in Section 3.5.3, and defines the length of the perpendicu-
lar hctwcen thc initial position of the target atom and the incident

(a)

approaches

for r approaching infinity. Since angular momentum is conserved in
central force scattering, / is defined by either form in Eq. (3.37). The
distance b is called the impact parameter and is very useful in charac-
terizing a particle which approaches a center of force.

From Fig. 3.5, the distance of closest approach, r-in, is shown to be
determined from the condition E : V'(r), which translates to

l :  Mr^inug

l :  Muob

(3.37a)

(3.37b)

(3.38)

(3.3e)

Using Eq. (3.37b) to define the orbital angular momentum, we rewrite
Eq. (3.38) in the form

12
E = V(r^6)

2Mr'^1n

A I  V(r* in)  b2
v:f - .

E r?nin

where E : E" in the CM system. Eq. (3.38) shows that r.1n will
depend on the energy of the ion and the form of the interatomic

Mft,
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(a) Laboratory
vr,Er

-,-/,,lr"zT
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Since we are dealing with two particles only and no transverse
forces, the problem is two-dimensional in the plane defined by the
initial velocity vector for the ion and the initial position of the target
atom. Since we are dealing with conservative central forces, defined by
an ion-atom interaction potential V(r), conservation of energy in the
center-of-mass system will be

E": !M"(t2 + r2tb2"7 + v(r) (3.40)

where the first term is the system kinetic energy. The variable r is
defined in Fig. 3.7 as

f : t1 - f f2

with the CM distances 11 and 12 defined by

(3.41)

(3.42a)

(3.42b)

have the law of
which, during the

\
1M^\i
a-\

"2 ' '2

r ' , :  
M2 

r-  M1+ Mz

,', : - 
!J-,,

-  M\+ M2

I = M"rz@"= M"ugb

@" = uob
-12

(b) Center of Mass

Fig. 3.7. The collision trajectories at an impact parameter b for an elastic
collision between two unequal masses, as seen in the (a) laboratory reference
frame and (b) CM reference frame.

trajectory of the ion. This parameter will be shown to be an important
quantity in the scattering process and will define the hardness of the
collision. The dashed lines in Fig. 3.7 represent the asymptotes of the
ion and target atom trajectories. The parameter r,n1n is the distance of
closest approach during the scattering event.

The variable r is the CM separation distance between M1 and M2,
and 11 and 12 represent the distance from the center of mass to the ion
(M) and the target atom (M2), respectively. The value @. is the time
rate of change in the scattering angle, d@"f dt, and €0" is defined as the
angle between line 11 * 12 and the line perpendicular to r'in and is
different from the CM scattering angle 0". The energy E.Is the CM
energy, defined in Eq. (3.16), and M" is the CM mass, defined in Eq.
(3,11).

In addition to the conservation of energy, we
conservation of angular momentum, Eq. (3.33),
scattering process in the CM system, is given by

I :  M"r"@" (3.43)

where / is the constant angular momentum. For large values of r, the
angular momentum is simply related to the impact parameter and has
the magnitude M"usb (Eq. (3.37)). Since angular momentum is con-
served we have

from which we obtain

(3.44)

(3.4s)

now solve for GD" as aWith Eqs. (3.40),(3,44), and (3.45), we can
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function of any central force potential, V(r). From these equations we
obtain the radial equation of motion

t  :  ,0(r -  Y9- (q) ') ' "  (3.46)" \  E.  \ r l l
Using this result and noting that i : (drldt) and that @. : 1dO"/dt),
we obtain

d@".dr_d@"_

dt dr dr *l'-+-(+)'l*(3.47)

The CM scattering angle Q is found by integrating GD. on the left-hand
side of Eq. Q.a\ over the first half of the orbit, from 0"12 to rl2.
which corresponds to the integration limits on the right-hand side of
r^i, to infinity:

bdr
(3.48)

. 3.7 Distance of closest approach 59

closest approach, /'-;n, can be found by setting the expression under
the radical in Eq. (3.50) to zero. Since the radical in Eq. (3.50) is zero
at r : rmin, Ee. (3.50) has a singularity at r = r.1,, which must be
avoided during the integration processes. This can be accomplished by
carrying out the following substitution:

1
u:-

r
With this change of variables, the integration limits are transformed to
lf a = g and lf r^in, which transforms Eq. (3.50) to

rl/ r^in

0r:n-2bl
Jo

(3.s2)du

(3.s1)

(3.s4)

"rl2 
.@

I  d@.:  I
J 0J2 J r-in

r@

) (n-0") :J, . , "

*l'-+
bdr

(+)'1"

h_vtu) _(uu1rf ' t '
IE"J

This final form of the scattering integral removes the singularity as n
tends to zero.

3.7 Distance of closest approach

The distance of closest approach was defined by Eq. (3.39) and can be
rewritten as

7(r-in)
(3.s3)

I - b2f r2^1^

where Eq. (3.16) was used to transform the CM energy -8. to the
laboratory energy Es. For a Coulomb potential, F,q. (2.4), and a
head-on collision, b :0, we can rewrite Eq. (3.53) as

, r l r  -  v(r)  -
IE"

which reduces to

o":r-zb[-  
dr

''^",'lt-+-(+)'l''

(+)'1"(3.4e)

(3.s0)

:  E":  
M'  

En- Mt+ M2

l
I This final equation is called the classical scattering integral and gives

the angular trajectory information for two-body central force scatter-
ing. Eq. (3.50) allows us to evaluate the scattering angle 0" in terms of
energy E", the interatomic potential V(r), and the impact parameter
b. The scattering angle of an ion with energy E, moving in a force field
defined by V(r), will vary with the impact parameter b. The signifi-
cance of this will become clear when we discuss the differential
scattering cross-section in Chapter 4, where Eq. (3.50) is solved
explicitly for a Coulomb potential. In general, potentials are more
complex and numerical solutions are required. Transformations from
the CM angle 0" to the laboratory angles 0 and Q can be made with the
help of Table 3.2.

A comparison of Eqs. (3.50) and (3.39) shows that the distance of

For a head-on collision, /min = d", where d" is called the collision
diameter. For a given interatomic potential and ion energy, the colli-
sion diameter gives the lower limit to r*;n.

As an example, for l MeV He (21:2) ions incident on Si
(Zz: 14), the CM energy E": M2Esf (Mr + M2): 875 keV and the
distance of closest approach, the collision diameter : Z1Z2e2f E":
4.6 x 10-s nm, a value much smaller than a1p. It is informative to
write d" relative to the screening distance arF, where the parameter
a'wld" is referred to as a, the reduced energy, given by

, ._ a1;r  _ arcE- E arpMz

d, Z1Z2ez Z1Z2e2 M.t  + M2

,  ,  ,  Mt+Mz
d"=\r^ i i lu=o:- i i : Z1Z2e2:O#

(3.ss)
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Examining Eq. (3.55) we see that e is a dimensionless energy unit.
Physically, e gives a measure of how energetic the collision is and how
close the ion gets to the nucleus of the target atom. For example, the
value of the Thomas-Fermi screening distance a1p for He on Si is

0.885 x 0.053 :  1.5 x 10-2 nmQTF:

e\t, + Ztz',ztz
The reduced energy for 1 MeV He ions is

a-1p 1.5 x 10-2
' : : t : f f i :3 '4x103

This large value of e is consistent with the very small value of the
collision diameter.

For calculation purposes, Eq. (3.55) can be simplified and rewritten
as

€:
0.03255 E(eV) M2

(3.56)
zrzz(273 + z2r/31r12 M1* M2
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Problems

Problems

Derive the expression for the laboratory energy of the recoil
nucleus as written in Table 3.2.
Write a simple expression for E1f Es and E2f Es in backscatter-
ing (0:0) and right-angle scattering (9 = 90') for M1= M2,
Mt) Mz, and M1< M2. What are the allowed solutions?
What is the maximum energy transferred to electrons, silicon
atoms, and copper atoms by incident 100 keV electrons, silicon
ions, and copper ions?
In the laboratory system, we have arsenic ions at 100 keV
scattered from silicon atoms at I : 10o.
(a) In the laboratory system, what is ur, u2, Q, and E2?
(b) In the center-of-mass system, what is uion, 0", and Q"?
Solve the scattering integral, Eq. (3.52), for the unscreened
Coulornbpotential V(r) = Z1Z2e2f r.
(a) ' Derive a general expression for the distance of closest

approach, ro,in, for the unscreened potential.
(b) What is the value of r.;n for 2 MeV aHe incident on gold

for a head-on collision, b :0, and for b :0.5ar dnd Say,
where aL is defined in Eq. (2.47).

Prove that I : Mruo approaches I : Muob for r approaching
infinity (nq. (3.37)).
Using Eq. (3.39) and assuming a pure Coulomb potential,
calculate the value of r*;n for a 100 keV boron atom (2, = J)
on silicon (Zz: 14) for an impact parameter b : 1. nm. What
is the significance of your answer?

6l
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Cross-section

4.1. Introduction

In Chapters 2 and 3 we developed concepts essential to our under-
standing of ion-solid interactions. In Chapter 3 we derived equations
describing the kinematics of binary elastic collisions. These equations
enable us to calculate the amount of energy transferred to a target
atom in a collision when the scattering angle of the projectile or the
target atom is known. Conversely, we could calculate the scattering
angles if the amount of energy loss in the collision were known. At the
end of Chapter 3 we developed an expression for the center-of-mass
scattering angle, Q, which is a function of the ion energy, the impact
parameter b, and the interatomic potential energy Y(r). The details of
the interatomic potential energy were discussed in Chapter 2.

In Chapter 4 we will examine the probability of ion-solid scattering
events. During ion irradiation and ion implantation experiments, many
ions or energetic particles interact with many target nuclei. Due to the
large number of interactions, the questions of how much energy will be
transferred in a collision or what the scattering angle will be must be
answered using statistics and probability. The differential cross-section
is the fundamental parameter that we will develop. It gives a measure
of either the probability of transferring energy I in the range between
T and T + dT to a target atom or of the probability of scattering a
projectile into some angle between Q and 0" + d0". The differential
cross-section has units of area, typically centimeters squared. The
differential cross-section integrated over all angles is the total cross-
section, often referred to simply as the cross-section.

The differential cross-section will become an important parameter in
describing ion ranges in solids and radiation damage, both of which
will be discussed later in this book. The differential cross-section
depends strongly on the form of the interatomic potential.

4.2 Angular differential scattering cross-section 63

4.2 Angular differential scattering cross-section

In ion-solid interactions, it is customary to describe the number of
particles scattered through different angles 0" in terms of a quantity
called the angular differential scattering cross-section. Imagine the
experiment depicted in Fig. 4.1, where a beam of ions is incident on a
thin foil and is scattered into a detector of area L.a at a polar angle
between Q and 0" + d0". Each of the ions in the incident beam has a
different impact parameter b (as described in Chapter 3) and will be
scattered through a different angle. We define the differential d,n6 as
the number of ions scattered into the detector of area Aa, between
angles 0" and 0c + d9c, per unit time. We also define 16 to be the flux
of incidenl pafticles, equal to the number of ions incident on the
sample-,fier unit time, per unit area (i.e., ions per second per centi-
meter squared). The solid angle of the detector, AQ, is related to the
detector area, La, and its distance away from the sample, R, and is
given by

Lgt : La _ (RA4XR sin %AE) _
Rz Rz

We now define do(0"), the differential scattering cross-section, to be

A0Aqsin 9. (4.1)

lon Beam..'....,'..,.'...............*

Fig.4.1. Experiment for measuring angular differential cross-section. The
dctector area is Ac: (RAO")(RsinQAq). By moving the detector to al l
tngular positions fbr a fixed R, all the scattered particles can be counted, and
tlrc dctcctor wi l l  havc covcrcd an arca 4nR2, or a total sol id ansle of 47,..

62

w



I
64

given by

(4.2)

where for La-+0 we have Ae)-+dQ. The term do(0)ldA is the
differential scattering cross-section per unit solid angle, and dnr/dQ is
the number of particles scattered into the angular regime between 0"
and 0" * d9. per unit solid angle. Since the units of Q (steradian) are
dimensionless, the differential scattering cross-section has units of
area.

The cross-section is simply the effective target area presented by
each scattering center (target nucleus) to the incident beam. At a more
microscopic level, the scattering cross-section can be shown to be
dependent on b, the impact parameter. In Fig. 4.2 we present the
collision process in which the incident particle is scattered by a target
nucleus through an angle 0". The projectile moves in a nearly straight
line until it gets fairly close to the target nucleus, at which point it is
deflected through an angle 0". After being deflected, the trajectory of
the particle is again nearly a straight line. If there had been no
interaction force between the projectile and the target nucleus, the
projectile would have maintained a straight trajectory and passed the
target nucleus at a distance b.

On examining Fig. 4.2, we see that all incident particles with impact
parameter b are headed in a direction to strike the rim of the circle
drawn around the target nucleus and will be deflected by an angle 0".
The area of this circle is nbz, and any particle with a trajectory that
strikes anywhere within this area will be deflected by an angle greater
than 0". The target area defined by the impact parameter is called the

Fig.4.2. Scattering of a particle that approaches a
parameter b. The total cross-sectionis o: nb2.

4.2 Angular differential scattering cross-section 65

total cross-section o(Q) :

o(0"1 : o6z (4.3)
For projectiles moving with small values of b, the cross-section defined
by Eq. (4.3) will be small, but, due to the interaction forces, the
scattering angle will be large. Thus, b is proportionalto o(0"), while 16
and o(Q) are inversely related to 0". From this discussion, we see that
b:  b(0") .

In addition to the total cross-section, there is the differential cross-
section, do(O"), and its relationship to b. As shown in Fig. 4.3,
particles incident with impact parameters between b and b + db will
be scattered through angles between Q and 0c + d1c. The differential
cross-sectioo for this process is found by taking the differential of Eq.
(4.3) wittriespect to the impact parameter:

do(0") : d(nb') : 2rb db (4.4)

From the description given in F,q. (.\ and the schematic presented in
Fig. 4.3, the differential cross-section of each target nucleus is pre-
sented as a ring of radius b, a circumference2rb, and width db. Any
incident particles with an impact parameter within db will be scattered
into angles between g. and 0c + d9c.

From the examples presented in Figs. 4.2 and 4.3, we see that there
is a unique connection between the value of b and the scattering angle
f/.. To find the dependence of do(O") on the scattering angle, we
rewrite E,q. @.q in the form

Cross-section

do(4) _ 1. dne

do 10 dQ

do(0") :2,b(o)lw)ldo" (4.5)

/ae"

- Central Force
(Target Atom)

nucleus with an impact

k

l ' ig. 4.3. Nuclcar targct arca for thc dif ferential cross-section do :2rb db.
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We use the absolute value ot db@,)1d,0" to maintain do(O") as a
positive value; 9" increases as b decreases, indicatingthat db(0")/dq is
negative.

To determine an expression for the differential scattering cross-
section per unit solid angle (Eq. 4.1), we note that scattering experi-
ments are performed by observing the number of incident particles that
are scattered into a solid angle located at 0". Measurements give

information in units of the number of scattering particles per element
of solid angle. A schematic of this process is presented in Fig. 4.4. The /
annular region represents the solid angle dQ subtended between ther
scattering angles 0. and e" + de". The entire area of the sphere',
of radius R is 4nR2, and the total solid angle of the sphere is 4n.
The shaded area is a ring of radius R sin 0", circumference 2nRsin 0",
and width RdQ. The area of the shaded ring is therefore
(zn)(Rsing.)(RdQ):2rR2 sing.d9.. By definition of solid angle'
areaf R2, we obtain

dC2 = 2rsin0"d0" (4.6)

The result is equivalent to Eq. (4.L), where Ag has been integrated
over 2n. The differential scattering cross-section for scattering into a
solid angle dO (Eq. (a.1)) is obtained by combining Eqs. (4.5) and
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(4.6) to produce

(4.7)

Eqs. (4.5) and (4.7) give the differential scattering cross-section in
the center of mass. The equivalent expressions in the laboratory
rcference frame can be obtained for the scattered projectile and
scattered target nucleus by using the angular relationships presented in
Table 3.2.

Integration of Eq. (4.7) provides a relationship between the differen-
tial scattering cross-section and the impact parameter:

[uo@") db : [' Y\9) sin e" dQ
Jo )0, dO

which results in the expression

do(4) _ o laul
do 

- 
' t '0" ld4l

* : rf 
"@sin 

ede (4.8)

where the dependence of scattering angles on the impact parameter
has been omitted for brevity. By linking Eq. (a.8) with the expression
fitr 9" (Eq. (3.50)), an effective means of passing between V(r) and
do(Q) can be established.

As an example of the use of the angular differential cross-section, we
consider the condition where the interaction between colliding particles
lr purely Coulombic; for this situation the projectile and target nucleus
erc treated as pure nuclei, with the projectile described by mass and
atomic number M1 and 21, and the target nucleus described by mass
gnd atomic number M2 and 22. The interatomic potential for Cou-
Iumb interaction is given by

Zt Zte2
v\r) :

r
whcre r is the distance of separation between the two nuclei. To put
Eq. (a.9) into the same form as Eq. (3.52), we make the following
lubstitutions:

(4.10a)

(4.10b)

(4.11)

(4.e)

I
u=-

r

Fig,4,4. The solid angle dQ subtended at the scattering angle Q by the
iniremental angle dQ. By definition, dAl4r is the shaded area divided by the
entire area of spherical surface; the shaded area is equal to 2n(R sin 0.)(R dA)'
Then dQf4r :2n R2 sin 0"d0.f4r?; therefore d,Q :2tt sin 0"d0"-

lncl

leut l ing to

a: ZtZze2

V(u) :  su
I
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With the irrtclutomic potentiirl written in this way, the angular scatter-
ing integrrr l  ( l jq.  (3.52)) bcconrcs

4. 2 Angular differential s cattering cros s -s ection

Applying Eq. (a.15) to the upper limit in Eq. (4.13) gives

(4.1,6)

which can be rewritten as

0" - r : + L * .,n-,(--.-1, * (--l-)' l- ' ') @.17)2 2 \zE"bL \2E"bl)  I

We now use Eq. (4.L7) to express b in terms of 0". Eq. (4.17) can be
fcwritten as

69

, | / 'u,n

0":n-2.1u

( ' .

o": r  -r [ .+-, , ' - ' (du
(4.r2) ,E"b

(u
t -
\2E"b J

\

It#' fh - *l'o
Eq. @.12) can be intcgrated exaotly by noting the following integral
solution:

I  dx - l  - ,1 c+2dx\
|  

- - - i l r r  

l - r

l1u + cx + dx2)r l2 ed)t2 \  @)tP I

where Q : r:2 :4ad. For Eq. (4.I2), these variables are equal to

7 -a
a- ^ ' .  c:  i  d=- l

6z 
'  

8.62'

n: l - ( r .  {  )" b, \ '  '  +nluz )

) ' )*

"^(L= . +): *sin (+) =
l'.(ffi)'\"

b- s co,/&) : a cos(o"f2)
28" \21 2E" sin(0"12)

2Ecb

and

c*2dx:-(ru* o,)
\  n"bzl

After carrying out these substitutions, the solution to Eq. @.12) is
now given by

I  l_(uu*_" \ r ' ' t1/ ' -n

oc=rT-,1.,,,-, 0'".:nl\ l  (413)
|  \ { r+-- !a- l  / l
L \ \  +nlu2l  l -Jo

To complete the integration, a value for r.in must first be obtained.
From the definition of r.;n given in Eq. (3.39), and using the change in
variables defined by Eqs. (4.10) and (4.11), we have

b'u'^rn.ry-L=0 (4.1,4)

where umin: l/r^rn.Eq. @.U)is solved for a-in using the quadratic
equation, and has the solution

umin= 1 -  +(:+"((=:- \ ' * r )" ' )  (4.1s)
/min b \zbE" \\ 2bE" I I I

Tlre trigonometric representation of this equation is presented in Fig.
4,5, which allows us to construct the following relationship between the
lnpact parameter D and the scattering angle 0":

(4.18)

We will now use Eq. (a.18) together with Eq. (4.7), do(O)lda
r b/sin 0"ldblde"l, to obtain the differential cross-section for scattering

1

Ifi. a.5. Trigonomefiic relation between the center-of-mass scattering angle,
0u, and the impact parameter, b, for the Coulomb potential.
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A:iri;l|t *fffr:o' 
the Coulomb potential. Dirrerenriating Eq.

db _ s Sot@"/2))
do" 2E;---dq- 

=

:_d

+n"rirf@J4
and multiplying by b

;#(#h)
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4.3 Energy-transfer differential scattering cross-section

In a fashion similar to the development of the angular differential
scattering cross-section, we will derive an expression for the transfer-
ring of energy during a scattering event. Consider Fig. 4.6, where a
flux of energetic incident particles traverses a thin target, of thickness
d.r and unit area, containing a total of N target atoms per unit volume.
Each target nucleus presents an effective scattering atea, o, to this
projectile, similar to the presentation in Fig. 4.2.The thin target in Fig.
4.6 contains a total of Ndx target nuclei per unit area. The product
oN d.r represents the total fraction of the target surface area which
&cts as an effective scattering center to the incident energetic particles.

From the above analysis of Fig. 4.6, we can define the probability of
a projectile with energy ̂ E undergoing a scattering event or a collision
with a target nucleus while traversing a thickness dr as

P(E):  No(E)dx (4.22)

Eq. (4.22) defines the total collision cross-section, o(E), between an
energetic particle of energy E and the target atoms. The total cross-
section gives a measure of the probability for any type of collision to
occur where energy transfers are possible, for energies up to and
including the maximum value Ty:4M1MzEol(Mr+ M)2 (Eq.
(3.27)).

In addition to the total cross-section, we also wish to consider the
more restrictive types of interactions that can occur between particles
with energy E and target nuclei. Consider the condition where we wish
to know the probability that a projectile with energy E will transfer an
amount of energy between T and T + dT to a target atom. Such a

4 ro'

Unit Area

l ' lg. 4.6. Schcmatic vicw of a port ion of a scattering foi l ,  with each target atom
l)rcscnting an cl ' l 'cct ivc scattcr ing arci l  (r .

bdb :  ! ( -n - \ '  " " t@"/z)d0" Z\Zn,l , i",  <eJZl

@.Iea)

(4.1eb)

(4.20)

been

leads to

used.

do(o")_ u laol  =1/" \z cot(0"/2)

or 
da sin 4loq l -  

' \4 
)  * t" t t "  @JD

do(o,) : /_ "_)'_ r
dA \+n,l , i"^ @J4

x.::" 
the geometrical retation sin g" = 2sin(0"/2)cos(o"f2) has

For l MeV aHe ions (Zr=2) incident on silicon (Zz=14), thevalue of E" = g75 keV and i : io.z"vn-. For a 1g0'La"tr"atteringevent, 0J2 :90o and sin4 1e"fz7 = t. it 
"n 

do@")/da = (uf E"1z =1.3 x 10-10 nm2, or a value of 1.3 x .10-24 
cm".The angurar differentiar cross-section is obtained from the reration_ship between de andde de.filed i, Bqr.-?+ O), de = 2nsinL"dB", and(4.20) . Using some differentiat utg"u*1;"Luu"

do(0,) 
= do(4) da _ "_l 

u \2 cos1o,/z)
do, - da A 

= 
^\ru") *GJ" @.2r)

,-i11' @'20) .and, 
(4.21) are the couromb angurar differential scatter-rng cross-sections, otherwise known as the n"tn"*ri ii6)rrntiotcross-sections. From Eqs..(4.20) and (4.2I) we see from rhe iin@"/Z)term in the denominator that uottr ooi4i fao" ana do@")/daincreaseas Q decreases. This indicates that the"coutomu #;;;;'iro""r,favors smalr-angre scattering' or, in other words, the largest cross-sections are for scattering events of small ungf"r.

For forward scatteringwith 0" = 2, J*-(0"/2)= 1 X 107, indicating aratio of seven orders of magniiuo"'u"t*J"n forward scattering at 20and backscattering at 1g0..

&ru
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probab'ity function defines the differential energy-transfer cross_section do(E)ldT , and it is obtained by differenti 

^tiiinq-. ii.nl
p(E, T)dz = dl(E) 

ar :  lu,dq(E) dr dx = 1 do(E) 
o,dr dr o@) dz
(4.23)

where P(8, T) is the probability that an ion with energy E will
Td"lg: 

a collision producing an energy transfer in the range Z andT +dr while traversing a distance ai, unaivsimpry defined as theratio of the differential cross_section to it 
" 

,ntut energy_transfer cross_section.

.. 
t:t ,n: scattering processes described bylFigs. 4.2 and4.3, probabil_ity functions can be constructed which describe the probability of acollision producing a deflection Q in the incident project'e,s trajectoryor the probab'ity of.scattering the project'e into the angurar rangebetween Q and 0" + dTc while it travels u-arr,un"" d-r. These probabil-ity functions are given, respectively, by

4. 3 Energy-transfer scattering cross-section

(4.28)

This final expression is extremely useful since it allows us to determtne
the differential energy-transfer cross-section if the angular differential
cross-section is known, or if the CM scattering angle and impact
parameter are known.

For lMeVaHe ions, (Mt:4) incident on Si (M2:28),  Tp1:
438 keV and 4nfTya:2.9 x 10-5 eV-1. We have shown that for back-
scattering(9. : 180'), do@)ldfl-: 1.3 x 10-24 cm2.Thus, do(E) fdf :

3.7 x l0-2e cmzfeY.
'Ihc total cross-scction for a scattcring prtlccss is determined by
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incident ion experiences a forward scattering event in traversing the
film. As F,q. (a.25) shows, the probability of a scattering event
occurring increases linearly with layer thickness.

The dependence on dO in F,q. (a.25) can be removed by applying
Eq. (a.6), dQ : 2nsin 0"d0", which allows us to write Eq. (4.25) as

P(E, a) det :  ZnN dxdq,L:)  :  2nsin 0"N d*9s!E)4s" (4.26)
dQ da

The relationship between energy transfer T and the scattering angle

4, or the solid angle Q, can be found by setting the probability
functions given by Eqs. (a.B) and (4.26) equal to each other:

P(E, T) dT :  P(E, O) dO

which is equivalent to

do(E) dr : 2n sin r" or^do(0")
dr da

()r

do(E) : 2nsina"lqa. I 
d"(-0") 

@.27)
dr " ldr l  do

The transferred energy 7 is given in Eq. (3.26) as

T : Tusin2 (O"fZ) : )f*e. _ cos 0")

and the differential angular cross-section for scattering into a solid
angle dQ is given by Eq. (4.7) as

do(o")_ u laul
da 

-  
r tn 4ldo" l

which allows us to rewrite E,q. (.27) in the form

do(E) - hr do(o,) - qn U laUl
dT TM dO 7y sin 0" ld0"l

P(4) : o(O")N dx 9.24a)and

P(Lc, b)db = dP-(0") 
: ,ru,do(4) dpdx : I do(0;1 

^_'  
dp dp 

srva: 

"1eS-;;an 
9.24b)

where o(Q) is the total angular scattering, cross-section given in Eq.(4'3) and do('") is 
^the 

differential angurar scattering cross-sectiongiven in Eq. @q. An expression similir to Eq. (4.23) can also beconstructed for the differentiar angular scattering cross_section as afunction of the impacr parameter.
Following an analogous route to the development of the differentialenergy cross-section grl.-n in Eq. (4.23), the probability function for aparticle with energy E being r"utt"r"a-into a solid angle de in theangular region between 0" and ec + decis given by

p(a', a)49 = !P(E) 
do = dq(g)Nd.rde ' 

1o.rr1df) osl
As an example, the Rutherford backscattering cross-section (o" --180') for 1 Mev aHe incident on Si *u, ,ho*n to be 1.3 x 10_2a cm(Section 4.2). n the Si target (N = 5 x tob 

"t;;;r) 
l, , ,n, ,n,.u(d'r : 10-6 cm), then Nd; = 5 x 1016 atoms/cm2. The probability,P(E' a)' of this scattering event is 6.5 x r0-8. For forwarl *i"ringat 2o, the corresponding probability is 0.65, indicating that nearly every

K
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setting the probability functions described by Eqs. (4.23) and (4.24b)
equal to unity. This l$ads to

4.4 Power law potentials

coA

7$a.7. The nucleus is assumed to be a point charge at the origin O. At any
dlrlnnce r, the particle experiences a repulsive force. The particle travels along
I puth that is initially parallel to line OA a distance b from it and finally
pernllel to line OB, which makes an angle 4 with OA.

Itlf, l.e. (a) Momentum diagram for impulse scattering (see Fig. 4.7). Note
lhlt lp'l = lprl. i.e., for elastic scattering the energy and speed of the projectile
||t the same before and after the collision. (b) Change-of-variable diagram for
tromcntum (impulse) approximation.

B, In the l imi t  of  0"111,
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and

o( E\ : Sr" ao(n) o'
Jr^^ dT

o(0") : I:^-*P ou : f ̂ .'ou 
o'

Aq
Mv

Ap _ L,(Mv)-o
- :  v.

Mv Mv

(4.29a)

(4.zeb)

where ?y is the maximum transferred energy, given by F,q. (3.27),
7.6 is a lower limit to the energy-transfer process, and b-r* is the
maximum impact parameter. The total cross-sections given by Eqs.
(4.29a) and (4.29b) are equivalent, i.e., o(E): o(Q). That is, inte-
grating the energy-transfer differential cross-section over all energy
transfers from Z6n to Zy is the same as integrating over the range of
impact parameters from b-u* to zero. This equality between the total
cross-sections provides a means for passing between the energy-
transfer differential cross-section and the impact parameter.

4.4 Power law potentials and the impulse approximation

In this section we will examine the relationship between the potential
V(r) and the scattering angle Q for the collisions where V(r)lE, 

(b)

remains small throughout the entire collision process. This condition is
realized for collisions where b is large, which in turn leads to small-
angle scattering. I

The scattering cross-section for central force scattering with large
impact parameters can be calculated for small deflections from the
impulse imparted to the particle as it passes the target nucleus. As the
particle with charge Zf approaches the target nucleus, charge Z2e, it
will experience a repulsive force that will cause its trajectory to deviate
from the incident straight line path (Fig. a.D.

Let p1 and p2 be the initial and final momentum vectors of the
particle. From Fig. a.8(a) it is evident that the total change in momen-
tum, Ap:pz - p1, is along the z'axis, which is the axis correspond-
ing to the condition r : rmin. In this calculation the magnitude of the
momentum does not change. From the isosceles triangle formed by Pr,
P2, and Ap shown in Fig. 4.8(a) we have 3q, t+.fO) indicates that, at small deflections, 0" can be thought of as

bilng due to a small impulse, Ap : A(Mv), approximately perpen-
dleulsr to the original direction of motion. This small-angle calculation
h orrmrnonf y callcd the impulse or momentum approximation.

(a)

: r in&
2

ir
l

(4.30)
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The impulse dqproximation is appropriate for the small-angle large-
impact-parameter\ollisions that dominate the sequence of scatterings
which determine the\gged particle trajectory. In the impulse approx-
imation the change in momentum is given by

lp = 
f noa,

lp : af roa'

where Fs is the component of the force acting on the ion perpendicular
to its incident direction. By using the geometry of Fig. 4.9(b), the force
may be written with r : (x2 + b')tP ut

ro = - dV(t) - -dv((x2 + u1r/z)

Then 
dY db

ln = -1* [* ,1rr. + b\rt\dx
v db J--

or, using Eq. (4.30),

t"=#=-+#f *v{,)a*

(4.31)

(4.32)

(4.33)

(4.34)

for Q << 1. Eq. (4.35) shows that the angle e is obtained from the
potential v(r) by one integration followed by one differentiation.
Using r = (x2 + y2)tP to change the integration variable in Eq. (4.35)
yields

'"= +r_(#)+[' - (i)'l'"'*

xl/or,)=f(+)"-'

(4.3s)

(4.37)

where s = L,2,, , ., k, is a numerical constant, and a1p is the screening
radius given by E;q. Q.ar. The screened Coulomb potential can be
written as

(4.36)

Eq. (a.36) is often referred to as the classical impulse approximation to
the scattering integral.

Consider now a screened Coulomb potential of the type V(r) x 7-1,
where the screening function can be approximated by the power form
given in F,q. (2.37)

Power law potenti.als

V(r) :  g,r- '

Z122e2k,t ':-ffi-
Differentiating Eq. (4.38) and inserting into Eq. (4.36) gives

," = Tr_,_,,_,1, _ (l),1-" o, (4 40)

4.4

the constant C, is

tion

The angular differential

(4.42)

(4.M)

scattering

(4.4s)

arpE"

Z122ez

cross-section can now be derived for the
the differential cross-section do(Q), Eq.

.(i)'(+)
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(4.38)

(4.3e)

solve Eq. (4.40) will require the following change of variable:

b

sin s
(4.41)

b is the impact parameter and u is a dummy variable. Carrying

the transformation gives

q = - tQ (kr in uds =Sr,
b'E' Jg b' E"

ys represents the integral portion of Eq. (4.42) and has the exact

(4.43\

z.(t . 
')

f(x) is the gamma function, with values of I(x) tabulated in
natical handbooks. The gamma function solution given in Eq.

"n/2
T, = 

Jo 
sin" adc =

has been approximated by Lindhard et al. (1968)

t l  gs -  t \ tP

' '= ; \  z )

9. = -&k'-(':r)'
e\u I

e is the reduced energy, initially defined in Eq. (3.55):

ining Eqs. (4.39) and (4.42) allows us to write the
equation in the compact form

law potential using
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(4.5), and Eq. (a.a5). Rewriting Eq. (a.afl in terms of the impact
parameter b

u = "*(#)
and differentiating b with respect to 4

lo, | - on ly,k,\l/ '  1,
ldol- ; \ ; /  F

The angular differential cross-section is

for d" << 1

(4.46)

(4.47\

(4.48)

(4.4e)

(4.s0)

(4.s1)

(4.s2)

(4.s3)

(4.s4)

where Ci1 is a constant given by

go = 2T 
1y,k,12/,

.t

f  = f*r in'2

In the small-angle limit,

(+)- ="inL=L

do (o ") = * rl+*lo' " = 
^(fu) o, "

4.5 Power law energr-transfer cross-section
The power law potential energy-transfer differential cross-section can
be obtained using Eq. (4.48) and the CM energy-transfer function, Eq.
(3.26),

Solving for Q

t, = ,(+\t'
\  1ul

taking the differential with respect to T

do.= dT

QlTitl2
and substituting into Eq. (a.a8) 

^z ,nr/s
do(E)=affffiar

Rewriting Eq. (a.5a) in terms of the laboratory energy Es and noting
that (Eq. (3.27))

4. 5 Energy-transfer cross'section

T* = 4MtM' 
-Eo(M1+ M)"

and from Eq. (3.35)

,=( 
on 

. \ (  
t r t '  

)
\  z1z2ez l \ rut  + ur1

we obtain

do(E\: 
Ci 

ar
EmTkm

where m = 7ls. The constant C*is given by
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where ),.* is a fitting variable given by

lk,v,\'^*:  "* \  z )

For the pure Coulomb condition, the power law equation, Eq. (4.55),
reduces to

c^: Ll^a+"(#)^(#)^

Cr: L(zZrZrez\2Mr
-  4 '  Ml

do(E) = f,{zzrz"\,h#

(4.ss)

(4.s6)

(4.s7)

(4.se)

It f,r) is taken as the Thomas-Fermi screening function, good fits to

the constant k, over various distances corresponding to the range of
ions yield (Winterbon et al . , 1970).

hB = L.309; hP = 0'327; ir : 0'5 (4'58)

Winterbon et al. (1970) recommend the following values of m for

various regions of e:

m=l l3fore<0.2

m :712 for 0.08 < e < 2

m : ! (Rutherford scattering) for e > L0

The validity of Eq. (4.54) can be determined by considering Ru-

therford scattering where the potential is unscreened Coulomb. The
power parameter for this potential is J : m : t. In this case the

screening function, F,q. (4.37), is 1 and therefore kr=I. From Eq.
(4.44), Tr--I, and C6 is simply equal to 2n. For s = 1, Eq. (4.56)

reduces to

(4.60)
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Table 4. 1. Thomas- Fermi
s c atte rin g func tio n f(tr 12)

t(trP1

We now compare this result with the differential energy-transfer
cross-section obtained using the Rutherford cross-section given by Eq.
(4 '20) '  

do( ' " \ - /aY oo
\4E" I sin410,l2)

The transformation from do(0")/aO to do(0")ldT is made with the
help of F,q. (.28)

do(E) - 4o do(O")

dr rM do
which allows us to write the differential of the energy-transfer function
with respect to the scattering angle for the Coulomb potential as

I  o \ ,  4nTydT /  \2 i
do(E): l -r  ^ :  !-1..9- l  lYar

\4E,1 T'ysina (0,12) 4 \ E" I Tz
Substituting for E",7y, and a gives

MzEo
L^: -'  Mr+ M2

T 4MrM2
, tl - ------------- ^ E0

(Ml+ M)"
a = ZtZzez

which leads to

do(E\ : L(22, Zrez\zYJ 
dT

4 '  M2 EsT2
A comparison of this result with the power law derived equation, Eq.
(4.60), shows them to be identical.

4.6 Reduced cross-section

As the previous sections have shown, the power law potential can
greatly simplify the calculation of the energy-transfer differential cross-
section. However, the differential cross-section is still a function of six
major parameters: do:f.(Zy Zz, E, 0", Mr, M). To simplify
differential cross-section calculations even further, J. Lindhard,
V. Nielsen, and M. Scharff introduced a universal one-parameter
differential scattering cross-section equation in reduced notation:

2 ^.  1 la,

do: 
-oon t \ t ' ' ' )  

dt
) ,32
-L

where / is a dimensionless collision parameter defined by

, : r 'T:e2sinz/&)
TM \21

0.ffi2
0.004
0.01
0.02
0.04
0.10
0.15
0.20
0.,10
1
2
Aa

10
20
40

0.t62
0.209
0.280
0.334
0.383
0.43L
0.435
0.428
0.385
0.275
0.184
0.t07
0.050
0.025
0.0t25

After Lindhard et al. (1968).

(4.62)

l

where 7 is the transferred energy, Zy is the maximum transferred
energy, and e is the dimensionless energy unit defined in Eq. (3.55) as

a1y arrE,
c=---- : : - : - - - - - : : -

d" Z1Z2ez
In the above expression, d" is the unscreened (i.e., Coulomb) collision
diameter or distance of closest approach for a head-on collision (i.e.,
b = 0), and am is the screening distance.

Lindhard et al. (1968) considered fQrP) n be a simple scaling
function and the variable / to be a measure of the depth of penetration
into the atom during a collision, with large values of r representing
small distances of approach. Tabulated data for fQrlzl for the Thomas-
Fermi atom are presented in Table 4.1. Fig. 4.9 shows a plot of the
tabulated data together with an analytical approximation (Winterbon
et al.. 1970\

&,

T
(4.6r)

f(tt/21 : 1, ll6ll * (2A, fltlz/2y-s1z (4.63)
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where

Cross-section

).' : 1.309

Also plotted in Fig. 4.9 are the various forms of fQrP)for power law
scattering. At small values of /, the function fQ12) asymptotically
approaches f(t1/27: 1'116, which is a special case of the more general
power law approximation

f( t121 :  L^7r12-^ (4.64)

where the values for ).^ are listed in Eq. (4,58) and ).' : Lth. F,g.
(4.64) approximately describes scattering from a potential of the form
V(r)e r-s - r-t/m. At low energies the collisions become less pene-
trating (small r), and the scattering by screened Coulomb potentials is
determined by regions with large values of s. In this situation the
interaction during collisions involves the outer part of the atom and
increases with increasing t. For high-energy collisions, where s ( 2,
screening effects are minimal since interactions primarily involve the
inner parts of the atom, and f(tll2) decreases with increasing t.

On examining Fig. 4.9, we see that the potential of the form
V(r) e. y-z (i.e., m: U3) is an excellent approximation to the

1o-r 1

t
Fig.4.9. Reduced differential cross-section calculated from Thomas-Fermi
potentiaf .  Ordinate is f( t tru ) =2Pt3 dofdt(na2l 1: abscissa i t  6: l trzfsin(0f2).
Thick sol id l ine ranging over €: L0-3-10: Eq. (a.61). Dashed l ine: Eq. (4.63).
Thin solid lines are calculated using the power law cross-section formula, Eq.
(4.64). For large values 61 1tP (i.e.,large e), the curve approaches Rutherford
scattering ( i .e.,  an r-1 potential),  whi le at small  values of 1t/z ( i .e.,  small  e),
the curve approaches an r 3 potential. The horizontal line represents f(r1l2) for
an r 2 potential. (After Winterbon et al . , 1970 .)
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,^tu^t. r*t r"r"-rr",

Screening function y m q trP range

l,enz-Jensen, F,q. (2.39) 2.92
Lindhard, Eq. (2.33) 0.625
I-indhard, Eq. (23\ 0.879

'fhomas-Fermi

Bohr, Eq. (2.38)

Moliere, Eq. (2.36)
KOo
ZBL,F,q. (2.52)
Kr-Cb

1.309
2.37

3.07
2.54
5.01
3.35

0.333
0.103
0.191
0.333
0.333
0.216
0.25
0.203
0.233

0.667
0.570
0.5t2
r.24
r.24
0.530
0.475
0.413
0.445

10-3-10
10-3-10
10-3-10
10-3-10
10-3-10
10-3-10
10-s-10
10-6-104
10-6-104

0.5

After Winterbon (197D.

"Kalbitzer and Oetzmann (1980).
iLittmark andZiegler (1981): Wilson et al. (1977).

Thomas-Fermi fpnction f(t1/2) at small values of r. Fig. 4.9 also shows
that when s :2 (m : 1.12), fQuzl : constant : 0.327, which is a rea-
sonable overall approximation, and for s : 1. the unscreened Coulomb
potential (Rutherford scattering) is approximate for t >> 1.

The Thomas-Fermi function f(t1l2) described by Eq. (a.fi) can be
generalized to provide a one-parameter universal differential scattering
cross-section equation for other interatomic potentials. The general
form of Eq. (a.63) is

ferPl : 
^rr/2,-m[t 

+ (2htr-my1-r1q (4.6s)
where i., m, and 4 are fitting variables, with ,t: 1.309, m : ll3 and
q =213 for the Thomas-Fermi version of f(tr/zl given in Eq. (a.6).
Additional values for 7, m, and q for other forms of the screening
function are presented inTable 4.2.

4.7 Hard-sphere potential

f n some problems in ion-solid interactions, a great deal of physical
insight can be obtained by assuming that the projectile and target
atoms interact like colliding billiard balls (elastic hard spheres). The
interatomic potential which represents this condition is the hard-sphere
potential given in F,q. (2.6). The hard-sphere approximation is most
rupplicable for near head-on collisions, with the impact parameter b
rupproaching zero and the scattering angle Q approaching a' (see Fig.
3.7(b)) .

0.4

N
)  ne

0.2

0. 1

r-3 potential Rutherford
(r= 1.30er1/6) \ _!":f i:r i lg

a1 Potential
(f=9.51-rrz;
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A hard-sphere collision in the center of mass (CM) between two
particles with masses Mland M2and radii R1 and R2 is displayed in

Fig. 4.10. For a hard-sphere collision, the distance of closest approach

is given by

/min : 11 I 12 9.66)

where rr= Rr and 12: Rz. Comparing Figs. 4.10 and 3.7(b)' we see

that rl and 12 can be defined by Eq. (3,42), where r is replaced by t*io

From Figs. 2.2(a) and 4.10, we see that the interaction potential energy
will only apply at contact between the hard spheres. The hard-sphere
potential energy is simply equal to the CM kinetic energy, Eq. (3.16b),

M,I

": frli*'^'n
and

M1
f7 = -fmrn'  Mr ' l  Mz " '

v(r- i , )  = M2 
. .  Eo

M1I M2

The relationship between the impact parameter b and

tained from Fig. 4.1.0:

(.67a)

(4.67b)

(4.68)

ro,6 is ob-

Fig. 4.f0. The hard-sphere scattering geometry.

;The angular differential cross-section is obtained by differentiating Eq.
4.69) and using Eq. (4.5):

Eqs. (a.71) and (4.72) with Eq.
the hard-sphere probability of an
producing a recoil in the energy

85

(4.6e)

(4.70)

(4.71)

(4.72)

(4.23), we can easily
energetic particle with
range between 7 and

(4.73)

References

a = r*,,".r(!)

do(0"): zrrlsosin L *"L ae

energy-transfer differential cross-section is obtained by differenti-
ng Eq. (4.69) and using Eq. (4.28): 

.
do(E) 

- 
frr'^in

dT Ty

total collisional cross-section for a particle with energy .E transfer-
energy Z can be approximated following Eq. (4.3):

o(E) = m2^6

rgy E
* dT:

p(E, T\dr = |  do(E) 67 -  
9 l

o(E) dT Ty

The major advantage of Eqs. (4.71)-(4.73) is their lack of depend-
on E, which simplifies the integration needed in calculating

and radiation-damage values in Chapters 5 and7.
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Problems

Using Eq. (4.20), calculate the differential scattering cross-
section per solid angle for 100 keV Ar ions incident on Ni for
laboratory scattering angles of 10', 15o, 45o.
Using Eq. (4.25), calculate the probability p(8, a) for
100 keV Ar ions incident on Ni for laboratory scattering angles
of 10o and 45o for Ni thicknesses of L0 and 100 nm.
Show that Eq. (a.61) can be written in the form

do - 
lTq' l'-d,t- t(t'/l) g7
2 e T3/2

For M1< M2 (He on Si) ,  Mt:  Mz (Si on Si) ,  and Mt> Mz
(Xe on Si), calculate values of the dimensionless collision
parameter t, 0", and the laboratory scattering angle, 0, for
values of TlTyl :0.25,0.5, and 0.75 (Eq. (4.62)).  Assume
Eo : 100 keV in all cases.
Using values from problem 4.4 and Table 4.1, calculate
do/dT.
Solve the power law cross-section, Eq. (4.55), for the hard-
sphere power law parameter m: 0 and compare with Eq.
(4.71) to find C6.

Problems 87

From the Coulomb cross-section described in Eq. (4.60),
derive a general expression for the total cross-section using
E,q. (.2e).
For 1 MeV aHe ions on Si, what is o(E) for Z-1, : 15 eV (see
problem 4.7)?
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